Performance Data Format [Base] Page 1 of 2

Platform SDK: Performance Monitoring

Performance Data Format

The format of the data retrieved by the RegQueryValueEx function begins with a fixed-length header structure,
PERF_DATA_BLOCK. The PERF_DATA_BLOCK structure describes the system and the performance data. The
PERF_DATA_BLOCK structure is followed by variable number of variable-length object data items. The header of the
object contains the offset of the next object in the list. The following diagram shows the basic performance data structure.

PERF_DATA_BLOCHK

First Object
Second Ohject

Third Chject

Last Ohbject

There are two formats for the object data items: one that supports multiple instances, and the other that does not
support multiple instances.

Each object information block contains a PERF_OBJECT_TYPE structure, which describes the performance data for the
object. The PERF_OBJECT_TYPE structure is followed by a list of PERF_COUNTER_DEFINITION structures, one for
each counter defined for the object. For an object with only one instance, the list of PERF_COUNTER_DEFINITION
structures is followed by a single PERF_COUNTER_BLOCK structure, followed by the counter data. Each
PERF_COUNTER_DEFINITION structure contains the offset from the start of the PERF_COUNTER_BLOCK structure to

the corresponding counter data. The following diagram shows the structure of a performance object that does not support
multiple instances.

PERF_OBJECT_TYPE

ode. PERF_COUNTER_DEFINITION
PERF _COUNTER_DEFINITION
PERF_COLINTER_BLOCK
Courter
Dt —

For an object type that supports multiple instances, the list of PERF_COUNTER_DEFINITION structures is followed by a
list of instance information blocks (one for each instance). Each instance information block contains a
PERF_INSTANCE_DEFINITION structure, the name of the instance, and a PERF_COUNTER_BLOCK structure. The
following diagram shows the structure of a performance object that supports two instances.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/performance_data_format.htm 9/28/2005



Performance Data Format [Base]

Courter
Definitions

Courter Data
for all
counters of

firzt instance,

Courter Data
for all
counters of
second
instance.

PERF_OBJECT_TYPE

| PERF_COUNTER_DEFINTION

PERF_COUNTER_DEFINITION

PERF - COUMTER._DEFIMITION

PERF_[MSTAMCE_DEFIMITION

Mame far First Instance

PERF _COUMTER_BLOCK

PERF _IMSTAMCE_DEFIMITION

Mame for Second Instance

PERF_COUMTER_BLOCK

]7

Page 2 of 2

"anahle-Lenith
Licode string

Each instance haz
a zimilar block.

Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
© Microsoft Corporation. All rights reserved. Terms of use.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/performance_data_format.htm 9/28/2005



PERF_DATA_BLOCK structure [Base] Page 1 of 2

Platform SDK: Performance Monitoring

PERF_DATA_BLOCK

The PERF_DATA_BLOCK structure describes the performance data provided by RegQueryValueEx function. The data
starts with a PERF_DATA_BLOCK structure and is followed by a PERF_OBJECT_TYPE structure and other object-
specific data for each type of object monitored.

typedef struct _PERF_DATA_BLOCK {
WCHAR Signaturel[4];
DWORD LittleEndian;
DWORD Version;
DWORD Revision;
DWORD TotalBytelLength;
DWORD HeaderLengthj;
DWORD NumObijectTypes;
DWORD DefaultObject;
SYSTEMTIME SystemTime;
LARGE_INTEGER PerfTime;
LARGE_INTEGER PerfFreq;
LARGE_INTEGER PerfTimelOOnSec;
DWORD SystemNameLength;
DWORD SystemNameOffset;

} PERF_DATA_BLOCK;

Members

Signature
Pointer to a null-terminated Unicode string, "PERF".

LittleEndian
If the processor is big endian, this member is zero; otherwise it is one.

Version
Version of the performance structures. This member is greater than or equal to one.

Revision
Revision of the performance structures. This member is greater than or equal to zero.

TotalByteLength
Total size of the performance data, in bytes.

HeaderLength
Size of this structure, in bytes.

NumObjectTypes
Number of object types being monitored.

DefaultObject
Object title index of the default object whose performance data is to be displayed. This member can be -1 to indicate
that no data is to be displayed.

SystemTime
Time when the system is monitored. This member is in Coordinated Universal Time (UTC) format.

PerfTime
Performance-counter value, in counts, for the system being monitored.

PerfFreq
Performance-counter frequency, in counts per second, for the system being monitored.

PerfTime100nSec
Performance-counter value, in 100 nanosecond units, for the system being monitored.

SystemNameLength
Size of the system name, in bytes.

SystemNameOffset
Offset from the beginning of this structure to the name of the system being monitored.

Requirements
Client Requires Windows XP, Windows 2000 Professional, or Windows NT Workstation.
Server Requires Windows Server 2003, Windows 2000 Server, or Windows NT Server.
Header Declared in Winperf.h; include Windows.h.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/perf_data_block_str.htm 9/28/2005



PERF_DATA_BLOCK structure [Base] Page 2 of 2

See Also
PERF_OBJECT_TYPE, RegQueryValueEx

Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
© Microsoft Corporation. All rights reserved. Terms of use.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/perf_data_block_str.htm 9/28/2005



PERF_OBJECT_TYPE structure [Base] Page 1 of 2

Platform SDK: Performance Monitoring
PERF_OBJECT_TYPE

The PERF_OBJECT_TYPE structure describes object-specific performance information. This structure is followed by a list
of PERF_COUNTER_DEFINITION structures, one for each counter defined for the type of object.

typedef struct _PERF_OBJECT_TYPE ({
DWORD TotalBytelLength;
DWORD DefinitionLength;
DWORD HeaderLength;
DWORD ObjectNameTitleIndex;
LPWSTR ObjectNameTitle;
DWORD ObjectHelpTitleIndex;
LPWSTR ObjectHelpTitle;
DWORD DetailLevel;
DWORD NumCounters;
DWORD DefaultCounter;
DWORD NumInstances;
DWORD CodePage;
LARGE_INTEGER PerfTime;
LARGE_INTEGER PerfFreq;

} PERF_OBJECT_TYPE;

Members

TotalByteLength
Size of the object-specific data, in bytes. This value includes this structure, the PERF_COUNTER_DEFINITION
structures, and the PERF_INSTANCE_DEFINITION and PERF_COUNTER_BLOCK structures for each instance.
This member specifies the offset from the beginning of this structure to the next PERF_OBJECT_TYPE structure if
one exists.

DefinitionLength
Size of the object-specific data, in bytes. This value includes this structure and the PERF_COUNTER_DEFINITION
structures for this object. This member is the offset from the beginning of the PERF_OBJECT_TYPE structure to the
first PERF_INSTANCE_DEFINITION structure or to the PERF_COUNTER_DEFINITION structures if there is no
instance data.

HeaderLength
Length, in bytes, of this structure. This member is the offset to the first PERF_COUNTER_DEFINITION structure for
this object.

ObjectNameTitleIndex
Index to the object's name in the title database.

ObjectNameTitle
Pointer to a null-terminated string that specifies the name of the object. This member initially contains NULL, but it
can contain a pointer to the actual string once the string is located.

ObjectHelpTitleIndex
Index to the object's Help title in the title database.

ObjectHelpTitle
Pointer to a null-terminated Unicode string that specifies the title of Help. This member initially contains NULL, but it
can contain a pointer to the actual string once the string is located.

DetailLevel
Level of detail. Applications use this value to control display complexity. This value is the minimum detail level of all
the counters for a given object. This member can be one of the following values.

Detail level Meaning

PERF_DETAIL_NOVICE No technical ability is required to understand the counter data.

PERF_DETAIL_ADVANCED The counter data is provided for advanced users.

PERF_DETAIL_EXPERT The counter data is provided for expert users.

PERF_DETAIL_WIZARD The counter data is provided for system designers.
NumCounters

Number of counters in each counter block. There is one counter block per instance.

DefaultCounter
Default counter whose information is to be displayed when this object is selected. This member is typically greater
than or equal to zero. However, this member may be -1 to indicate that there is no default.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/perf_object_type_str.htm 9/28/2005



PERF_OBJECT_TYPE structure [Base] Page 2 of 2

NumlInstances

Number of object instances for which counters are being provided. If the object can have zero or more instances, but
has none at present, this value should be zero. If the object cannot have multiple instances, this value should be
PERF_NO_INSTANCES.

CodePage
Code page. This member is zero if the instance strings are in Unicode. Otherwise, this member is the code-page
identifier of the instance names.

PerfTime
Current value, in counts, of the high-resolution performance counter.

PerfFreq
Current frequency, in counts per second, of the high-resolution performance counter.

Remarks

If there is only one instance of the object type, the counter definitions are followed by a single PERF_COUNTER_BLOCK
structure. This structure is followed by data for each counter. (The PERF_COUNTER_BLOCK structure contains the total
length of the structure and the counter data that follows it.)

If there is more than one instance of the object type, the list of counter definitions is followed by a
PERF_INSTANCE_DEFINITION structure and a PERF_COUNTER_BLOCK structure for each instance. The
PERF_INSTANCE_DEFINITION structure includes the name, the identifier, and the name of the parent of the instance.

Following the counter data, there is a PERF_INSTANCE_DEFINITION structure and a PERF_COUNTER_BLOCK
structure for each instance specified in the PERF_DATA_BLOCK structure that begins the performance-data area.

Requirements
Client Requires Windows XP, Windows 2000 Professional, or Windows NT Workstation.
Server Requires Windows Server 2003, Windows 2000 Server, or Windows NT Server.
Header Declared in Winperf.h; include Windows.h.

See Also

PERF_COUNTER_BLOCK, PERF_COUNTER_DEFINITION, PERF_INSTANCE_DEFINITION

Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
© Microsoft Corporation. All rights reserved. Terms of use.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/perf_object_type_str.htm 9/28/2005



PERF_INSTANCE_DEFINITION structure [Base] Page 1 of 1

Platform SDK: Performance Monitoring
PERF_INSTANCE_DEFINITION

The PERF_INSTANCE_DEFINITION structure contains the instance-specific information for a block of performance
data. There is one PERF_INSTANCE_DEFINITION structure for each instance specified in the PERF_OBJECT_TYPE
structure.

typedef struct _PERF_INSTANCE_DEFINITION {
DWORD ByteLength;
DWORD ParentObjectTitleIndex;
DWORD ParentObjectInstance;
DWORD UniquelD;
DWORD NameOffset;
DWORD NameLengthj;
} PERF_INSTANCE_DEFINITION;

Members

ByteLength
Size of this structure, including the subsequent instance name, in bytes.

ParentObjectTitleIndex
Index of the name of the "parent" object in the title database. For example, if the object is a thread, the parent object
type is a process, or if the object is a logical drive, the parent is a physical drive.

ParentObjectInstance
Index to an instance of the parent object type that is the parent of this instance. This member may be zero or greater.

UniquelID
Unique identifier used instead of the instance name. This member is PERF_NO_UNIQUE_ID if there is no such
identifier.

NameOffset
Offset from the beginning of this structure to the Unicode name of this instance.

NamelLength
Size of the instance name, in bytes. This member is zero if the instance does not have a name.

Requirements
Client Requires Windows XP, Windows 2000 Professional, or Windows NT Workstation.
Server Requires Windows Server 2003, Windows 2000 Server, or Windows NT Server.
Header Declared in Winperf.h; include Windows.h.

See Also

PERF_OBJECT_TYPE

Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
© Microsoft Corporation. All rights reserved. Terms of use.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/perf_instance_definition_str.htm 9/28/2005



Displaying Object, Instance, and Counter Names [Base] Page 1 of 5

Platform SDK: Performance Monitoring

Displaying Object, Instance, and Counter Names

The performance data contains information for a variable number of object types, instances per object, and counters per
object type. Therefore, the number and size of blocks in the performance data varies. To ensure that your application
correctly receives the performance data, you must use the offsets included in the performance structures to navigate
through the data. Every offset is a count of bytes relative to the structure containing it.

Note The reason the system uses offsets instead of pointers is that pointers are not valid across process
boundaries. The addresses that the process that installs the counters would store would not be valid for the process
that reads the counters.

The following example displays the index and name of each object, along with the indexes and names of its counters.

The object and counter names are stored in the registry, by index. This example creates a function, GetNameStrings, to
load the indexes and names of each object and counter from the registry into an array, so that they can be easily
accessed. GetNameStrings uses the following standard registry functions to access the data: RegOpenKey,
RegCloseKey, RegQueryInfoKey, and RegQueryValueEx.

This example creates the following functions for navigating the performance data: FirstObject, FirstInstance, FirstCounter,
NextCounter, NextInstance, and NextCounter. These functions navigate the performance data by using the offsets stored
in the performance structures.

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define TOTALBYTES 8192
#define BYTEINCREMENT 1024

LPSTR lpNameStrings;
LPSTR *1lpNamesArray;

/*****************************************************************

* *
* Functions used to navigate through the performance data. *
* *

‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***********************/

PPERF_OBJECT_TYPE FirstObject ( PPERF_DATA_BLOCK PerfData )
{
return( (PPERF_OBJECT_TYPE) ( (PBYTE)PerfData +
PerfData->HeaderLength) );
}

PPERF_OBJECT_TYPE NextObject ( PPERF_OBJECT_TYPE PerfObj )
{
return( (PPERF_OBJECT_TYPE) ( (PBYTE)PerfObj +
PerfObj->TotalBytelLength) );
}

PPERF_INSTANCE_DEFINITION FirstInstance( PPERF_OBJECT_TYPE PerfObj )
{
return( (PPERF_INSTANCE_DEFINITION) ((PBYTE)PerfObj +
PerfObj->DefinitionLength) );
}

PPERF_INSTANCE_DEFINITION NextInstance (
PPERF_INSTANCE_DEFINITION PerfInst )

{
PPERF_COUNTER_BLOCK PerfCntrBlk;

PerfCntrBlk = (PPERF_COUNTER_BLOCK) ( (PBYTE)PerfInst +
PerfInst->ByteLength);

return( (PPERF_INSTANCE_DEFINITION) ((PBYTE)PerfCntrBlk +
PerfCntrBlk->ByteLength) );
}

PPERF_COUNTER_DEFINITION FirstCounter ( PPERF_OBJECT_TYPE PerfObj )
{

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/displaying_object_instance_and_counter_n... 9/28/2005



Displaying Object, Instance, and Counter Names [Base]

return( (PPERF_COUNTER_DEFINITION) ((PBYTE)PerfObj +
PerfObj->HeaderLength) );

PPERF_COUNTER_DEFINITION NextCounter (
PPERF_COUNTER_DEFINITION PerfCntr )

return( (PPERF_COUNTER_DEFINITION) ( (PBYTE)PerfCntr +
PerfCntr->ByteLength) );

/‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k************************

* *
* Load the counter and object names from the registry to the *
* global variable lpNamesArray. *
* *

‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***********************/

BOOL GetNameStrings( )
{

HKEY hKeyPerflib; // handle to registry key

HKEY hKeyPerfl1ib009; // handle to registry key

DWORD dwMaxValuelen; // maximum size of key values
DWORD dwBuffer; // bytes to allocate for buffers

DWORD dwBufferSize = sizeof (DWORD); // size of dwBuffer

LPSTR lpCurrentString; // pointer for enumerating data strings
DWORD dwCounter; // current counter index

LONG lResult; // return value

// Get the number of Counter items.

if ( RegOpenKeyEx ( HKEY_LOCAL_MACHINE,
"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Perflib",
Or
KEY_READ,
&hKeyPerflib) != ERROR_SUCCESS

return FALSE;

1Result = RegQueryValueEx( hKeyPerflib,
"Last Counter",

NULL,
NULL,

(LPBYTE) &dwBuffer,
&dwBufferSize );

RegCloseKey ( hKeyPerflib );

if( 1lResult != ERROR_SUCCESS )
return FALSE;

// Allocate memory for the names array.
lpNamesArray = malloc( (dwBuffer+1l) * sizeof (LPSTR) );

if( lpNamesArray == NULL )
return FALSE;

// Open the key containing the counter and object names.

if ( RegOpenKeyEx( HKEY_LOCAL_MACHINE,
"SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Perflib\\009",
0!
KEY_READ,
&§hKeyPerfl1ib009) != ERROR_SUCCESS

return FALSE;
// Get the size of the largest value in the key (Counter or Help).
if ( RegQueryInfoKey( hKeyPerflib009,
NULL,

NULL,
NULL,

Page 2 of 5

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/displaying_object_instance_and_counter_n... 9/28/2005



Displaying Object, Instance, and Counter Names [Base]

NULL,

NULL,

NULL,

NULL,

NULL,

&dwMaxValuelLen,

NULL,

NULL) != ERROR_SUCCESS

return FALSE;
// Allocate memory for the counter and object names.
dwBuffer = dwMaxValuelLen + 1;
lpNameStrings = malloc( dwBuffer * sizeof (CHAR) );

if (lpNameStrings == NULL)
{
free( lpNamesArray );
return FALSE;
}

// Read the counter value.

1Result = RegQueryValueEx( hKeyPerflib009,
"Counters",
NULL,
NULL,
lpNameStrings, &dwBuffer );

RegCloseKey ( hKeyPerflib009 );

if( 1lResult != ERROR_SUCCESS )
return FALSE;

// Load names into an array, by index.

for( lpCurrentString = lpNameStrings; *lpCurrentString;
lpCurrentString += (lstrlen(lpCurrentString)+1) )

dwCounter = atol( lpCurrentString );
lpCurrentString += (lstrlen(lpCurrentString)+1);

lpNamesArray [dwCounter] = (LPSTR) lpCurrentString;

return TRUE;
}

/*****************************************************************
* *

* Display the indexes and/or names for all performance objects, *

* instances, and counters. *
* *

‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k***********************/

int main ()

{
PPERF_DATA_BLOCK PerfData = NULL;
PPERF_OBJECT_TYPE PerfObj;
PPERF_INSTANCE_DEFINITION PerflInst;
PPERF_COUNTER_DEFINITION PerfCntr, CurCntr;
PPERF_COUNTER_BLOCK PtrToCntr;
DWORD BufferSize = TOTALBYTES;
DWORD i, j, k;

// Get the name strings through the registry.

if( !GetNameStrings( ) )
return FALSE;

// Allocate the buffer for the performance data.

Page 3 of 5

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/displaying_object_instance_and_counter_n... 9/28/2005



Displaying Object, Instance, and Counter Names [Base]

PerfData = (PPERF_DATA_BLOCK) malloc( BufferSize );

if ( PerfData == NULL )
return FALSE;

while ( RegQueryValueEx( HKEY_PERFORMANCE_DATA,

"Global",

NULL,

NULL,

(LPBYTE) PerfData,

sBufferSize ) == ERROR_MORE_DATA )

{
// Get a buffer that is big enough.

BufferSize += BYTEINCREMENT;
PerfData = (PPERF_DATA_BLOCK) realloc( PerfData, BufferSize );
}
// Get the first object type.
PerfObj = FirstObject( PerfData );
// Process all objects.
for( i=0; i < PerfData->NumObjectTypes; i++ )
{

// Display the object by index and name.

printf ( "\nObject %1d: %s\n", PerfObj->ObjectNameTitlelIndex,
lpNamesArray [PerfObj->0bjectNameTitleIndex] );

// Get the first counter.
PerfCntr = FirstCounter ( PerfObj );
if( PerfObj->NumInstances > 0 )
}/ Get the first instance.
PerfInst = FirstInstance( PerfObj );
// Retrieve all instances.
for( k=0; k < PerfObj->NumInstances; k++ )
}/ Display the instance by name.
printf( "\n\tInstance %S: \n",
(char *) ((PBYTE)PerfInst + PerfInst->NameOffset));
CurCntr = PerfCntr;
// Retrieve all counters.
for( j=0; j < PerfObj->NumCounters; j++ )
}/ Display the counter by index and name.
printf ("\t\tCounter %$1d: %$s\n",
CurCntr->CounterNameTitleIndex,
lpNamesArray [CurCntr->CounterNameTitleIndex]) ;

// Get the next counter.

CurCntr = NextCounter( CurCntr );

}
// Get the next instance.

PerfInst = NextInstance( PerflInst );

else

Page 4 of 5

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/displaying_object_instance_and_counter_n... 9/28/2005



Displaying Object, Instance, and Counter Names [Base] Page 5 of 5

// Get the counter block.

PtrToCntr = (PPERF_COUNTER_BLOCK) ((PBYTE)PerfObj +
PerfObj->DefinitionLength );

// Retrieve all counters.
for( j=0; j < PerfObj->NumCounters; j++ )
{

// Display the counter by index and name.

printf( "\tCounter %1d: %s\n", PerfCntr->CounterNameTitleIndex,
lpNamesArray [PerfCntr->CounterNameTitleIndex] );

// Get the next counter.

PerfCntr = NextCounter ( PerfCntr );

}
// Get the next object type.

PerfObj = NextObject( PerfObj );
}
free( lpNamesArray );
free( lpNameStrings );
free( PerfData );

return TRUE;

Last updated: March 2005 | What did you think of this topic? | Order a Platform SDK CD
© Microsoft Corporation. All rights reserved. Terms of use.

ms-help://MS.PSDKSVR2003SP1.1033/perfmon/base/displaying_object_instance_and_counter_n... 9/28/2005



